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MODIFIED ELASTIC SOLUTION METHOD IN
SOLVING ELASTOPLASTIC PROBLEMS OF
STRUCTURE COMPONENTS SUBJECTED

TO COMPLEX LOADING

DAo HuUY BICH
Vietnam National University, Hano:

SUMMARY. Modified elastic solution method in the elastoplastic process theory has
been proposed by the author [2] and was applied in solving some 2D and 3D elastoplastic
problems of structure components subjected to complex loading. The method makes use
of an algorithm in which a step is made in the loading process and iterations are carried
out on this step. The performance of the method was fulfilled and the convergence of the
method was considered numerically. In this paper the other performance of this method is
presented and the convergence of the method is proven theoretically in the general case of
a hardening body which obeys the elastoplastic process theory. The more complicated 3D
problem of bodies of revolution subjected to non-axially symmetric load is investigated.

1. Boundary value problem of the elastoplastic process theory and
modified elastic solution method '

The formulation of the boundary value problem of the elastoplastic process
theory and analysis of the existence and uniqueness theorems have been carried
out in [3, 4]. '

Let K;(z,t) and F;(z,t) be external volume and surface forces that act on
the body and let ©;(z,t) be displacement on the body’s surface. It is necessary to
find displacements u;(z,t), strain tensor €;;(z,t) and stress tensor o;;(z,t), where
t - the loading parameter, that satisfy the following equations

dz; : :
1/0u; Ouy o)

1 N , en, 1.2
&1 = 5 (3:1:,- f 32?;') e . ()
. 2 Skee a
Sij = - Aéy; + (P — A) ke;kesﬁ’ z efl, (1.3)

3 oy
o =3Ke= K0, ' TE ﬁ, (1.4)
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and the boundary conditions

oijn; =Fi,  £€S,, (1.5)
Ui = i, Z € Sy, (1.6)

0=0uUs, S,UuS, =8, S,NnS, =0, telo,T],

where

A= (s0- %) (Lot

2
7l —cosfi\P 1
P =4¢'(s) — (3G — ¢'(s)) |
#'(s) — ( _¢(‘s))( =) i
.t t
 Sijéij _/ ._/ 2, . \/2
cosf, = P s—-o vy dt —“o (36”6”) dt.

Remark. . If we are concerned with the process theory of average curvature, then
in relationship (1.3) we put '

A:—si, P =¢(s).

For later use, for setting up the modified elastic solution method, we represent
A=3G(1-w;), P=3G(1-wy), 0<w; <1, 0<wy<1,
then for the general elastoplastic process theory

o= () - (552

) B P (1.7
vr= (1= g) [+ rme

and for the process theory with average curvature

oy ¢’
=1- %, wy=1—o—- 1.
¥1 3Gs” 2= 173G (1.8)
The stress-strain relationship (1.3), (1.4) can be rewritten as following
6:i; = Dijreére = (Eijre — Hijke)€ke, (1.9)
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where

, .
Eijke = (K - §G) 6i56ke + G(6ikbje + biebsk),

9 : . S.:Ske (1.10)
Hijke = —EGwlaijske + Gwi1(8ikbje + 6iebjk) + 3G (w2 — wy) —1—= -

& .

For any symmetric tensor €;; we have

2
D;jkeekeei; = 2Geijei; + (K - EG) 62

1 Sie::)2
— [ZGO.)I(E,_'J‘E,'J' - g(ekk)z) + 3G(w2 - wl)( > ;J)

u

. : 1 .
Since wy > wi, €j€i; — =02 > 0, thus the expression in the square brackets is
positive. On the other hand, ’

2
D,-jkgs,-,-eke > 5(}3'6,‘,‘6,‘,‘ + Ko? = 2G(1 —-Qz)S;]'Ei]' + K6?
2
> (1 — w2) [ZGE,']‘E{]' + (K - §G)02].
Consequently,
(1 — w2)Eijrecreci; < Dijreere€i; < Eijkecrei. (1.11)

Now we subdivide the range of variation of the loading parameter ¢ into N parts
and denote ¢ at the nodes by ¢, (n =0,1,2,...,N). Denote respectively

wi(z, tn) = o™ _u(0)+ Z Aul™ = oD 4 Al
m—l

eij(z,tp) = 5(") = Z AE (" Dy Asf;‘),

ois(,tn) = o) = 09 + Z Aol = oD + Aol

15 1y ?
Ki(zytn) = Ki(n)’ Fi(x’t") = Fi(n)’ (p,;(!:,tn) = (pgn)'

At each 'step n = 1,2,...,N of the change in the above - mentioned quantities,
from (1.1) - (1.6) and taking into account (1.9) we set up the following system of
equations '
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(n) ,
aiJ' (n) _ . 0
(9—1:]- +pK; ' =0,  z€(],

(r) gyl
(n) _ 1 Au, J a
Eij 2 ( a:c,- Oz, ), z €, (1'12)

”f;) = "E?—l) + A"z(-?) = 0'5,”""1) + Eijrebely) — (Hire)™aely, zeq,
ag‘)nj = Fi("), z€S,.

u = o

: TE Sy,

where (H;jkg)(") is an average quantity of Hjjke in the interval (¢,_1,t,) which
1 _
can be taken as 'Z—(Hi(jnkel) + Hi(;;c)l)’

In approximation we take (Hijk£>(n) = Hi(;kzl) , the system of equations (1.12)
can be considered as a system of equations for a certain inhomogeneous anisotropic
elastic body with additional volume and surface forces. This system of equations
is solved step by step, beginning from the first step n = 1. At the n-th step,
ui(-"_l), ES;_I), 8}—1) are known functions, which have been determined at the
(n — 1)-th step, the problem leads to determine Augn), AE‘E;) and Aa‘(;'). At
each step in the loading the problem generally is nonlinear, so we will solve it by
using an iterative method - a modified elastic solution method [2, 3] - which is
analogous to the elastic solution method in the deformation theory of plasticity
[1, 5, 8]. Non-linearity of the problem is expressed in the constitutive equations,
i.e. the third relation of (1.12). The procedure of the modified elastic solution
method on this relation is written as follows

o) =60 + Eirenely® — BV Aely Y, (1.13)
where k£ = 1,2,... is the number of iteration on the n-th step of the change in the
loading parameter. In the result at n-th step and k-th iteration, we can write the
system of equations in the form

2 (b 1) o (mko1)y , 904 ()
E(EijkeAeke ) - a_z]_(Hijke Ay, ) + “5;]—— +pK;" =0, ze€f,
(n,k) 'aAu(.n’k)
(n,k) _ 1 Ay, 9 a
Aeij 2 ( dz; + oz; » TE

(1.14)
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and the boundary conditions

Eijrebefyn; = F™ — 67 n; + HIGV Acly*"Un;, zes,,

Au‘("’k) = got(") — ut("_%), zE Sy,

(1.15)

with H{y, " Aely® = 0. |
The system of equation (1.14) and the boundary conditions (1.15) represent
a boundary value problem for an elastic body with the same elasticity constants

Ejjke as the initial body but with changed volume and surface forces.

After the system of equations has been solved, i.e. Augn) known, the displace-
ment is represented as uf.") = ut(""l) + AuE"). The strains sg-l)» are determined
from the Cauchy equations, these strains are then substituted into the constitutive

. (n) .
equations (1.3), from where o;;’ are obtained.

2. On the convergence of the modified elastic solution method

The modified elastic solution method was applied in considering stress and
strain states of some 2D and 3D bodies subjected to complex loading [3, 9, 10,
11]. From obtained numerical results, we can talk about the convergence of the
method. Generally, results of the third and fourth iterations are already closer to
each other; they differ from each other with small errors.

Now we introduce the proof of the convergence of the method theoretically.

For this aim we bring into use the functional Hilbert space H({l) with the
norm

I

el / 2GAe;;(u) Aei; (u)d + 9K / Ae?(u)d0

Q

/E,‘jkgAEkg(u)AEij(‘l;l.).dﬂ. ' (2.1)
Q

I

Let Av be any smooth vector function such that
Av = {Av,—} and Av,=0 on S,

Av is considered as a variation of the displacement increment. Multiplying the
first equation of (1.14) by Av; and integrating which over the entire volume 1 of
the body we obtain

) o
/ 32, [(Eijke — Hijke) Aege(u) + 0,(1" 1)]-Av.’dﬂ + / pK;AvidQ = 0.
J
Q
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Using the divergence theorem and the boundary conditions (1.15) we have

/(E;’jkl - H{J‘kg)AEkt(u)AE.'j ('U)dﬂ =

Q

= —/ag’_l)Ae;j(v)dﬂ +/pK{A‘U,;dQ+/F,;Av;dS. (2.2)
Q

o

Analogously [3], we can show that the expression on the left hand side is a linear
and continuous functional on H(Q). It follows from Riesz’s theorem that there
exists an operator A : H(Q1) — H*(2), where H*(Q1) is the dual functional space
of H(f), such that

(Au,,v)H = /(E:‘jkl - H,‘J‘kg)AE{_,'(U)AE,‘,‘(v)dﬂ.
Q

Let known function a(;_l) € Ly and K; € L, (p > 6/5), F; € Lq (g > 4/3), then

i
the expression at the right hand side of (2.2) is also a linear continuous functional
on H(f), and there exists an operator L : H — H* such that

—/oz(;."_l)Avidﬂ%-/pKiAv,'dﬂ‘&-/F,'Av,'ds = (L,v)H.
Q Q So

The equation (2.2) reduces to an equivalent operator equation
Au=1L, ueH(Q). (2.3)

A generalized solution of the boundary value problem (1.14) - (1.15) is also a
solution of the operator equation (2.3) and conversely. :

In the case, when iterations are carried out, we put Hijxe = H, i(;;c_el)- Using

the inequality (1.11) we can prove that, the operator equation (2.3) has a unique
solution (similarly [3, 7]).

Now consider the convergence of the above mentioned method. Because of
the scalar product in H(Q)

/EijkgAeke(u)Ae,-j(v)dﬂ = (u,v)#n,
Q

and from the existence of the fundamental operator 4, then
/Hi(ﬁczl)Aekg(u)As;j(v)dﬂ = (B*u,v)H,
0
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the equation (2.3) is rewritten in another form

Au=u—-B*'u=1L,

24
or u=B*u+L=Qu. (24)

The algorithm of the modified elastic solution method for solving the equation
(2.4) is as follows: on the k-th iteration to seek »(¥) from the equation -

u®) = Quk—1. ' (2.5)
From (2.4), (2.5) we have
(@OFD — ), 0)y = (Qu = QuO), v}y = (BuM — B*uls~D, )

= / (B Al (v) = Hij D Acly ™ (w) Aeij(v)dn

/que )AEkg (B) _ w (=) Ag;;(v)dA.

Using the inequality (1.11) into the last equation, it follows

(u(k'*'l) - u_("),v)H < max(wsz) / E,-]-MAeke(u(k) — u(k_l))Asij(v)dﬂ.

By putting v = uw(k+1) — 4 (k) the obtained result reduces to

“u(k'H) - u(k)HZ < maxwz / EijreAcke(u® — D) Ay (uF+) — w(B)dn

Q
(2.6)

Further, applying the Bunhiakovsky, Cauchy-Schwarz inequalities into functional

I= /EijkgAskg(u(k) — u* D) Agi (w1 — u(R)dn
Q

= /2GAeij(U(k) — u(k"l))Ae,-j(u(k+1) — u(k))dﬂ
Q

+9K/ Ae(ul®) — u(k—l))Ae(u(k+l) —u(®)dn
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we obtain

1/2
1< ( / 26 Aeis (u®) - u5~0) Ay (u®) - ul-D)an)

1/2
x / 2G A (w6 — u ) Ay (uk+) — u¥)d) !

1/2
/QKAez(u(") —u<’=-1>)dn) / (/QKAez(u(’““) —u(k))dﬂ)l/z

<

X

2GAey; (u® — u~D)Ae;;(u®) - u(k-1)dq + QK/ Ae?(ul®) — u““”)dﬂ) i

/'\\/—\/'\:)

/2GAem,,(u(’°+1) — u®) Aepmn (uF+D) — u*))dn

1/2
+9K/Aez(u(k+l) —u(k))dﬂ) /

< ) = w0 a5 - w0

Substituting the expression I into (2.6) we have
2 -
[u0 — w7 < maxw,[[ul® — D uD - B,

or
Hu(k+1) — u(k)“H < maxw2||u(k) — u(knl)HH. A
Since max(wz) < 1, the operator Q is compressible, from (2.7) one can lead the

!
convergence of the iterative method. The condition maxws = max (1 ¢3(GS) ) <1

is equivalent to ¢'(s) > 0, i.e. the material must be hardening.
3. Performance of the modified elastic solutlon method for the prob-
lem in curvilinear coordinates

On curvilinear coordinates the system of equations (1.14) is of the form

U, (B Aely™) + Vol ) — Vi(HEH Ay ™) + oKy =0,

n—1)
7 (3.1)
Al = [v,-(Auf""“) +Vi(ad™)], zeq, (3.2)
and boundary conditions
EijuAsgc’z’k)nj = F(in) a(n i+ H(nkel)A e* s, z€S8,,
Auf"’k) = tpgn) - uf”‘l), z € Sy, (3.3)

140



where
E;‘jkl _ Ag':]lgke + G(gilcgj'g + gfegjk),
) ) 0 o o St’jskt
FiTke _ —§GW19-‘Jgk£ + Guw, (g'kgie + g'egjk) + 3G(w2 - W1) 0,2 )

u

V; denotes the covariant derivative with respect to z7;
g% - metric tensor of curvilinear coordinate.

For investigation of the body of revolution subjected to complex loading, we
usually consider the problem in a cylindrical coordinate
1 .,
(ne,2): ¢ =1, %=, ¢%=1, g¥=0 (i#})

Denote Au, = Au, Au, = Av, Au, = Aw, the strain increment components are
determined by Cauchy equations (3.2):

dAu 10Av  Au dAw
Ao =y Afee =25+ Aem =0,
1/10Auv  8Av Av 1/0Av 106Aw
= ~{= - == _— 3.4
Arp 2(1‘ dp + or r )’ Acps 2( 9z r dp )’ (34)
Ac. — l(aAw aAu)
®r = 5\ or 8z /°
The system of equations (3.1) in this case reduces to
k (n) (n—1) *(n,k—1)
v2Aw(n,k) + 1 aAa(n ) — _pKz _ R: + R,
1-2v 9z G G G ’
n,k ,k
(V2 - —1—)Au("’k) 2 8Av(mR) 1 dagk
r2 r2  Jp 1-2v or
_ pK’(n) R,(-n-l) R:‘(n,k—l) (35)
= — —_— + s
G G G

w2 . i (n,k) EaAu(",k) 1 . laAo(n,k) _
(V rg)A'U + 72 ago + 1—20 7 aso

_ _pK‘(pn) ~ Rg(on-—l) R;;(n,k—l)

G ¢ TT ¢
where
Ae_aAw_i_aAu_{__A_ti laAv
9z or r r dp ’
s 0% 9 14 1 92

T 922 + or2 + r‘5+r_26<p2’
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o ) 1007 100k o9
® 0z r or r 8go ! '

RO = 902D 10(relTY) 1007V ob Y
T 0z r or r 6(,0 r

Rin-1) — 8§ (n——l) 1 a(ro (n 1)) la (n 1) 0,(‘;—1)
® 8z r ar r 6(,0 r

R, R}, R} have similar forms to (3.6), where
S;iSkeA
;= = 2Gw: (Aey; — —AB&,,) +2G(w2 —wl)-—i—gﬂ—ﬂé (5,5 =rp,2). (3.7)

u
By combining with boundary conditions, we have the solving equations. Conse-
quently, at each iteration it is necessary to solve a problem of linear elasticity with
new supplementary volume and surface forces.

4. Particular case. Numerical example |

A short cylinder of radius R and length L rotates with angle velocity w(t)
and is subjected to axesymmetrically with respect to axis z tangential and normal
£ —,p= ; ¢ and t, the stress and strain compo-
nents do not depend on variable p, furthermore, there are no torsional forces, the

stress state is determined by 02z, Orr, Opp, Orzs the strain state - by €2z, €rr, Epp)
€,, and radial displacement - Ru, axial displacement - Rw.

forces. Introduce variables ¢ =

The system of solving equations (3.5) becomes

VA (n,k) 1 BAG("J‘) _ _R;n“l) N R;(n,k—l)
w + 1—2v d¢ - G G , o
(V2 — -1—>A (n,k) 1 9Ag(mk) _ o 5"‘.1) N R:("’k_l)
p? u 1 -2 ap =—p el g ,
where oA A oA
u u w
Al = == :
9p p a¢
0= w2R2 1
G g’
(n—1) Py (n—1) (n—1) (4.2)
R n . rz zz ,
: dp a¢ p
(n—1) 30("' 1) ao(”"l) Sn—l) ‘S’n(p_l)
R\ _ rr rz A ’
" dp a¢ p



RyM*=1) | pr(mk=1) pave similar forms to (4.2) where
a:’.(n,k—l) — 2Gw§n—l)(A€§;,k—l) _ %Aﬂ("’k—l)&j)

(n=1) o(n-1) (n,k—1)
" 3G(w§"‘1) _ w§n-—1)) Sii 'Sk Aey,
(o_‘(‘n—l))Z

y (67 =r0,2).

Bounda.fy conditions are of the form:

a) with p =1

- )

1—v dAu(mk) v (Au(n,k) dAw(mk) FM gl gxnk-1)
. + ) — rr
2G 2G T 2¢

1-2v  ap +1—-2u p a¢ B

1 /0Aw(™k) aAiu(”'k) FZ,(n) U,(-Z_l) a:z(n’k_l)

E( T ac ) T2¢ 26 " ag (43)
. L

b) with ¢ = B =1

1—v dAwl(mk) v AAuME)  Ag(nik) F(") o(n_l) a*(n’k_l)

+ ( + ) _ L3 _ Ozz + zz

1-2v & 1-2v Op p 2G 2G 2G "’

1/0w(mk)  gAy (k) F4(") 052“1) o:z(n’kﬂ)

5( EPSE ¥ ) =2¢ " 26 T T a@ (44)

¢) with¢ =0

1-v dAw(mk) v (aAu("”‘) N Au("»k)) R N ot {mk=1)
l-2v o 1-2% Op s /26 " T2G G
1 (aAw(n’k) A Ay (k) Fé") oln~)  gr{mk-1)
1 + ) _ i N

4.
2 ap d¢ 2G 2G 2G ’ (4.5)

where F; (¢ = 1,2) - normal and tangential forces acting on cylinder surface p = 1;
F; (1 = 3+ 6) - forces acting on butt-ends of cylinder; of;-‘ ~Y _ known values of

stress components at preceding step (n — 1-th step); a:j("’k"l) - also known values

at considering step (n-th step) but on preceding iteration (k — 1-th iteration).

Following [6] in order to solve the homogeneous system of equations (4.1) we

express surface forces F 1("), Fé") and

(n—1) *(n,k—1) (n—1) *(n,k—1)
_Orr Orr — m(k—1) _Orz Orz — F(k_l) 1
26 T ag S hw O mme t e =R
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in Fourier series

F{™ =3 Fycoskg, F$1= ZFu cos kig,

i=1 1

= i= (4.6)
F{M = Zin sinkig, F¥Y = ZF'Z' sin k¢,

; =1

and the solution of the hontiogeneous system of ei;uations corresponding to periodic
surface forces is of the form

oo
AwWW:_E:Fhﬂﬂhﬁ+(@&4l_VCﬁhwmﬂﬁnMQ
i=1 *
Au(T = Z [ClpIo(k,'p) + CéIl(kip)] cos k;¢, (4.7)
i=1

where k; = %, I; - modified Bessel functions of first type, t-degree.

A particular solution with respect to volume force has the form -

Q1-2v , - (4.8)

For seeking a particular solution with respect to supplementary volume forces

_RETY R™Y K(e) _REY RCED K
G G G '’ G G - G

’

we express them into series

_,g Z{ (l)+Z ()JO Jp)}sinkgg,
7=t (4.9)
K; _

EZ)JI Jp) cos k; i$

||M3

.where
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1 2.
K (s,
/ / =(60) G kicdpde
0

1 ¢ ’
//psin2 ki¢dpd¢
00

¢

1
K*(¢, .

/ Mp.fo (A;p) sin k;¢dpd¢

0

G

1 ¢ ) (1:,j=1,2,...)
//Joz()\jp)p sin? k;¢dpd¢
0 0

£

0
1 K2 (6.p)
// ,g,p pJ1(A;p) cos k;¢dpd¢

aP =0

a,; , (6=0,1,2,...5 =1,2,3,...)

0
1 ¢ '
/ /le(/\jp)p cos? k;¢dpds
0 0
here A; is a solution of the equation
Ji(A;) =0

J; - Bessel function of i-degree.

A particular solution with respect to these forces has the form .

AwE ):Z{b(‘)+2b().]o }Sinkis‘, |

8

o_o (4.10)
Au(K)-——ZZb( )Jl (Ajp) cos k;g,
1=0j5=1
where
kidjall) — [(1— 20)k? +2(1 - v)A]af}
(1) — "J : ' =1,2,3,...; 7 =0,1,2,...
b’] 2(1—U)(k1'2+A?) ] (7' PRl ] ‘ 1.7 y Ly &y )!
kA 1-20)22 +2(1 — v)k?]ald)
bf.f)= 7 ” il v) ( ke, , (6=0,1,2,...5 7 =1,2,3,...). -

2(1 - u)(kf +23)
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The general solution (4.7) contains undetermined constants, which can satisfy
boundary conditions on p = 1, taking into account expansion (4.6) with k; # 0.
But with k; = O it must be to seek a part of the solution of homogeneous (4.1) in
elementary functions

Aw(s) = Ax¢,
p (4.11)
AulS) = A,p.
Hence, the general solution of the system (4.1) as follows
Aw = Aw(T) 4+ Aw®) + Aw® + Aw®)]
(4.12)

Au = AuT) + Au®) + Au® 4 AuH),

which contains 4 arbitrary constants Cy,C3, A1, A2. They are sufficient to satisfy
exactly boundary conditions at p = 1 and integrally boundary conditions at butt-

ends of the cylinder.

Numerical calculation was carried out for cylinder made of steel 15X18H12C4TIO
L ]

with the following characteristics: 7= 4, 0, = 800MPa, % =032, v = %

(incompressible material) and under external loading

Fy(2,t) =0, Fy(z,t) = Ta(t)o, sin7r(—2§ — 1),
F3(r,t) = F5(r,t) = P3(t)os,
F4(Uat) = _FG(Tvt) = T4(t)0'8.]1(A1T),

I

where T2(t), P:(t), T4 (t) may depend arbitrary on a parameter t. It means that
the loading process may be complicated.

Calculations in solving the problem have been fulfilled on PC with PASCAL
programme [9]..Subdivide loading parameter ¢ into steps, increasing from 0 to 40
and solve the problem step by step. At each step 4 iterations were carried out.

From the results it can be seen that

a) The error between two successive approximations decreases when the number
of iterations increases, i.e. the condition (2.7) is satisfied. It is shown that the
modified elastic solution method can be applied to this problem and its convergence
“has been proved. :

b) When the cylinder is subjected to the same loading process, if we subdivide the
loading process into smaller steps, the error between two iterations of all quantities
is also smaller, i.e. the error decreases. '

<) With the same value of load, the plastic deformation region in the cylinder
appears differently depending on the character of the loading process which reaches
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that value: the loading process is more complicated, so the plastic region is more
enlarging. Under complex loading the body works more weakly.

d) Established calculations may give a picture of elasto-plastic states of the cylinder
under axesymmetrical loads. Further we can consider elasto-plastic problems of
the cylinder under non-axesymmetrical loads by the above mentioned method.

5. Conclusions

a) Another performance of the modified elastic solution method in theory of
elastoplastic process is presented.

b) The convergence of this method is proved theoretically in the general case
of a hardening body with a supplementary assumption in approximation.

c) The applica.tibn of the method to the more complicated 3D problem of
bodies of revolution is considered.

This paper is completed with financial support from the National Basic Re-
search Program in Natural Sciences.
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PHUONG PHAP BIEN THE NGHIEM D AN HOI GIAI CAC BAI TOAN
DAN HOI DEO CUA CAC KET CAU CHIU TAI PHUC TAP

Phwong phép bién thé nghiém din hdi trong ly thuyét qud trinh dan déo do
tac gid d& xust da dwoc tng dung d€ gidi mot s8 bai toan dan hoi déo 2 chigu va
3 chidu cia cdc két cdu chiu tai phtc tap Phuong phdp ndy cho ta thudt toin
gidi tién budc theo tham s6 tai va tai mbi buéc (giai doan dit tai) thyc hién phép
lip gan dung lién ti€p, tai mbi gan dding ta c6 bai todn dan hoi tuyén tinh thuin
nhét nhung véi luc khéi va lyc mit thay d8i. i tién hanh cach thé hién phwong

phip va khdo sat sy hodi tu cda phwong phap qua céc thi du bing s6. Trong bai
béo nay trinh bay mdt cich thé hién khéc cia phwong phdp va chimg minh chit
ché sy héi tu cda phwong phép trong truwdong hop vat liéu tai bén va tuan theo ly
thuyét qua trinh dan déo. Bai todn ba chidu phitrc tap hon d6i véi vat thé tron
xoay chiu tdi khéng d8i xtng truc da dwgrc de cap dén.




